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Growth behavior of helical cellular automata
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A helical cellular automatdHCA) model constructed on a two-dimensional grid of cells with a helical
structure is presented and the pattern formation of this model studied by numerous computer simulations. It is
found that the evolutions of the HCA are sensitive to the circumference of the fnelith variousp, the
initial growth of the model generates various patterns ranging from Sierpinski triangle gasket, complex tex-
tured pattern, to lateral quasiperiodic structure. A sudden transition from regular fractal to compact pattern
occurs near the point whepeis equal to a positive integer power of 2. With increasing height of the patterns
(increasing growth time the model also exhibits different growth behaviors in the vertical direction for
variousp, including the formation of regular periodic patterns and the evolution from initial regular patterns to
eventual random structures. Fractal dimension analysis is used to characterize these different evolution pro-
cesses quantitatively.
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It is generally believed that many complex structures andyrown site; as the procedure continues, the pattern grows
processes in nature are originated from the simple interactionpward successively. To show the pattern and analyze its
of large numbers of basic connected components. Cellulatimension, the obtained pattern on the cylinder is mapped
automata(CA) defined by simple local rules can be viewed approximately to the corresponding rectilinear dsee Fig.
as prototypical models to simulate the complex behavior ofl(b)] with the sizepxh, wherep andh are the circumfer-
the local dynamical systemfl-5]. Previously, we con- €nce and the height of the original pattern, respectively.
structed a circular cellular automa@CA) model[6] grown We have studied the spatial pattern formation of the
on a square lattice with the ability to generate fractals andnodel for different circumference, and found that ap
show chaotic behavior. Contrary to the parallel updated ruléncreases, the evolution of the pattern with a hetyshows
in classical CA, in the CCA model different sequences for
selecting sites are applied, and the growth of a selected site is
determined by using an intermediate crowded condition
[7,8]. In this Brief Report, we introduce a helical cellular
automataHCA) model grown on a discrete helical structure.
This model is motivated from the structures of the helical
cylinderlike crystals observed in some biological systems
[9,10] and the geometries of the helical carbon and noncar-
bon nanotubegll,12, which have been studied intensively
in recent years. Using a simple growth rule, the model gen-
erates various patterns, from regular fractal to quasiperiodic
structures.

A HCA is a two-dimensional, binary valued, nearest-
neighbor interaction growth model. The model is constructed
on a cylinder, and the grid of cells is designed to have a
helical structure with a fixed unit pitch. Figure 1 is a sche-
matic illustration of this model. It can be seen that the cir-
cumferencep (the length of a complete tuyrof the helix is
18 units. In Fig. 1 we denote the sites grown and not by the
dark dots and the open dots, respectively. The growth rule of
the model is the following: Starting from an initial seed, the
sites are selected successively along the circular helix. A se-
lected site can grobecomes a dark dponly when just one
nearest site is a dark dot among its four nearest sitésr-
mediate crowded conditignin Fig. 1(a) the dark dots in the
first period of the helixfrom site 1 to 18 are taken as the

seed. The site 19 cannot be grown because it has two nearest (b)
dark dots(sites 1 and 18 the next selected site 20 has only
one nearest dark ddsite 2, therefore it becomes a new FIG. 1. Schematic illustration of the HCA model.
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FIG. 2. The first three patterns af=6 pattern sequences with

odd p, (8 p=2%+1=65, (b) p=3%x2%+1=193, (c) p=5x2°
+1=321.
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an interesting recursive behavior. The results of numerous

computer simulations can be described as follows.

(1) Pattern sequencesVhen p=mx2" or mx2"+1,
where n is a positive integer, andh an odd number, the
pattern has a regular structure. For a certgiwith m=1, 3,

5, 7, etc., the model generates two similar pattern sequenc

in the increasingp order: 2", 3x2", 5x2",..., (called as
even p pattern sequengeand 2'+1, 3x2"+1, 5x2"
+1,...,[odd p pattern sequendeln the evenp [odd p] pat-
tern sequence, the first pattern with the siZex2" [(2"
+1)X(2"+1)] has a structure similar to the Sierpinski tri-
angle gasket, and any other pattern with the size<@")
X(Mx2") [(mX2"+1)X(mx2"+1)] (m#1) is com-

posed ofmxXm elementary pattern blocks which have the

similar structure as the first one of the pattern sequence. Fi
ures Za)-2(c) show the first three patterns of the ogd
sequences fan==6. In Fig. 2a), if cutting out the sites in the
first row and the first columfithe first column contains only
one occupied site the remaining pattern with the sizé 2
% 28 is a regular Sierpinski gasket. Figuredpand Zc) are
3X 3 and 5x5 arrays consisting of the small pattern blocks,
respectively. As can be seen, these pattern block arrays sh
a lateral quasiperiodicity.

(2) Pattern transition from fractal to compacErom p
=2"+1, the evolution of the pattern undergoes abrupt

change. Figure 3 provides examples of the pattern evolutior

with increasingp in a narrow range op=28+ 1. Figure 3a)

is the first patterngg=28+1) of the oddp pattern sequence
for n=28, which is structurally equivalent to Fig(&. With

an increase ip of only one unit, the simulation generates the
pattern shown in Fig. ®). The pattern is still regular. As
compared with Fig. &), many blank triangle regions in Fig.
3(@ now become completely filled with the grown sites,
making the pattern very compact. The same compact patteri
can be obtained witlp=28—1. Further increasing in p
>28+1 region (or decreasing in p<28—1 region will
generate the overall homogeneous, but highly textured pat
terns, meanwhile irregular growth behavior appears as showi
in Figs. 3c) and 3d), where there are many locally random
or amorphous domains immersed inside the regular smal
pattern block arrays.

As shown above, for differenp, the densities of the
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FIG. 3. Evolution of HCA with(a) p=257, (b) p=258, (c) p
=264, (d) p=272.

culating the occupation percentage of patterrversusp,
where is defined as the ratio of the number of the occupied
sites to that of all the sites in a pattern with the height
=p. Figure 4 shows the curve af-p. It can be seen that
Yhere are sudden drops @fat the pointsp=mx2" andm
x2"+1, and with the increasing exponemt » decreases.
Therefore, the occupation percentagglselonging to differ-
ent pattern sequences can be distinguished fairly well from
the 7-p plot. On the other hand, for a certain pattern se-
quence such as=5 or 6, with increasingn, the values ofy

Ohave also small variation, and in the casenef4 the » even

ows an obvious fluctuation. This is due to the appearance
of the irregular growth behaviors in some local regions in-
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grown sites of the patterns are obviously different. We can FIG. 4. Dependence of the occupation percentaga the cir-
describe this kind of density variation quantitatively by cal- cumference of the helip.
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FIG. 5. Pattern evolution with increasing height wit) p =
=257,(b) p=258, and(c) p=384. Each block is numbered accord- 175
: . : 64 128
ing to its generated order. 16 32
. . . 170 s
side the pattern block arrays as shown in Figd),22(c),
Figs. 3c) and 3d), etc. In addition, a strong fluctuation in 165
the occupation percentage occurs at the position pes2" Ly 4 L . .
or 2"+ 1, an indication of the sudden transition from regular 20 60 100 14D 180
fractal growth to the compact growth. Thep plot clearly N
exhibits the sensitivity of the model to the variation in the
circumference of the helix. FIG. 6. Dependence of fractal dimension of the pattern blocks

According to the rule of the HCA model, the pattern N thg ordinal numbgll&l. (@, (b), and(c) co.rrespond to the pattern
growth in the vertical direction can be infinite, therefore an-evolution shown in Figs. @)-5(c), respectively.
other important aspect of the model is the long term behavior
of a growing pattern. In the following text, the pattern evo-384x384 with increasing height is shown in Fig(ch We
lution with increasing heightor increasing growth timeis  also divide the pattern into the numbered pattern blocks with
shown for several typical circumferences of the helix the size 384384 during growth. At early stage of the

Further growth starting from the regular Sierpinski tri- growth, the pattern has still a regular structure, but as the
angle gasket witp=28+1 is shown in Fig. &). Consider- height increases, more and more irregular growth behaviors
ing the lateral quasiperiodicity of the system, with increasingappear. Different to the previous two examples, the initial
height the growth process successively generates trianglegular triangle array evolves to a completely random struc-
patterns similar to the initial one. To describe the evolutionture eventually composed of many big or small empty tri-
process of the pattern conveniently, every triangle pattern iangles. From the examples shown in Figd)%&nd Kc), no
numbered according to its order of appearance. Figuoe 5 overall vertical periodicity seems to emerge, at least for the
shows the upward evolution of the compact pattgus @8 limited height available.
+2) with the heighth from 1 to 22X 4. The pattern consists In order to characterize quantitatively the pattern evolu-
of four small square blocks denoted by number 1 to 4. Agion with increasing height, we perform fractal dimension
seen clearly, these pattern blocks with the same sife (2analysis on the numbered pattern blocks in the plane. The
+2)x 28 exhibit obviously different texture. Further increas- dimension of a pattern block is calculated by using the box-
ing h, the simulation will generate complex, but still highly counting method. Figures(&—6(c) present the dimension
textured pattern. The evolution of the square blocks of sizevolution with increasing ordinal number of the blockis
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(increasing height corresponding to Figs. (8—5(c). As  helix can be rearranged so that each site has six nearest
seen from Fig. @), for the regular growth like Fig.(®) the  neighbors, then the obtained pattern on the cylinder can be
D-N curve exhibits regular oscillation, and many different mapped to a hexagonal grid in the plane. The model is de-
blocks have almost the same dimension value. The dimenerministic by construction. However, randomness can be
sion calculated from the first pattern block in Figabis  rather conveniently incorporated, either by choosing a ran-
1.584 96, which is just equal to the fractal dimension of reguom initial seed or by assigning a probability to each growth
lar Sierpinski triangle gasket as expected. T\ curve  sjte. Despite its simplicity it seems probable that this model
[Fig. 6(b)] obtained from the evolution of the initial compact may provide some insights into the pattern formation pro-
pattern shc_)ws many irregular fluctuati_o_ns. Itis found_that th&asses for the helical growth system and may also prove
peaks of dimension appear at the positibhs2”. The Simu-  ,qef1 in future studies seeking the controlled design of
lation result indicates that although these dimension pealﬁanostructure morphologies.

have almost the same heights, the corresponding blocks are To summarize, we have presented a helical CA model and

obviously different. In Fig. &), the D-N curve also shows . : ) .
random i‘lluctuations butgona:t)he average, there is a trend 0|gvestlgated the behavior of the evolutionary patterns of the

increase ofD. Contrary to Fig. 6), now sharp drops iD simple deterministic CA with only one control parameter.

occur at the positionsl=2". These results clearly show that The initial growth of the model generates various patterns

the pattern evolution with increasing height strongly dependd¢luding Sierpinski triangle gasket, regular compact pattern,
on the circumference of the helix and differentp can lead and array structure composed of elementary pattern blocks.
to completely different growth behaviors. With increasing height these initial patterns evolve to regular
The present HCA is quite simple. To improve the simula-Periodic structure, complex textured pattern, or completely
tion results as compared with the actual growth experimentgandom pattern, eventually. The results of the occupation
[9-12], the model may be developed in the following way. Percentage and fractal dimension analyses show that the evo-
The intermediate crowded condition may be extended to inlutions of the model are sensitive to the circumference of the

clude the second-nearest neighbors. All sites on the circuldrelix.
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