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Growth behavior of helical cellular automata
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A helical cellular automata~HCA! model constructed on a two-dimensional grid of cells with a helical
structure is presented and the pattern formation of this model studied by numerous computer simulations. It is
found that the evolutions of the HCA are sensitive to the circumference of the helixp. With variousp, the
initial growth of the model generates various patterns ranging from Sierpinski triangle gasket, complex tex-
tured pattern, to lateral quasiperiodic structure. A sudden transition from regular fractal to compact pattern
occurs near the point wherep is equal to a positive integer power of 2. With increasing height of the patterns
~increasing growth time!, the model also exhibits different growth behaviors in the vertical direction for
variousp, including the formation of regular periodic patterns and the evolution from initial regular patterns to
eventual random structures. Fractal dimension analysis is used to characterize these different evolution pro-
cesses quantitatively.
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It is generally believed that many complex structures a
processes in nature are originated from the simple interac
of large numbers of basic connected components. Cell
automata~CA! defined by simple local rules can be viewe
as prototypical models to simulate the complex behavior
the local dynamical systems@1–5#. Previously, we con-
structed a circular cellular automata~CCA! model@6# grown
on a square lattice with the ability to generate fractals a
show chaotic behavior. Contrary to the parallel updated r
in classical CA, in the CCA model different sequences
selecting sites are applied, and the growth of a selected s
determined by using an intermediate crowded condit
@7,8#. In this Brief Report, we introduce a helical cellula
automata~HCA! model grown on a discrete helical structur
This model is motivated from the structures of the heli
cylinderlike crystals observed in some biological syste
@9,10# and the geometries of the helical carbon and nonc
bon nanotubes@11,12#, which have been studied intensive
in recent years. Using a simple growth rule, the model g
erates various patterns, from regular fractal to quasiperio
structures.

A HCA is a two-dimensional, binary valued, neare
neighbor interaction growth model. The model is construc
on a cylinder, and the grid of cells is designed to have
helical structure with a fixed unit pitch. Figure 1 is a sch
matic illustration of this model. It can be seen that the c
cumferencep ~the length of a complete turn! of the helix is
18 units. In Fig. 1 we denote the sites grown and not by
dark dots and the open dots, respectively. The growth rul
the model is the following: Starting from an initial seed, t
sites are selected successively along the circular helix. A
lected site can grow~becomes a dark dot! only when just one
nearest site is a dark dot among its four nearest sites~inter-
mediate crowded condition!. In Fig. 1~a! the dark dots in the
first period of the helix~from site 1 to 18! are taken as the
seed. The site 19 cannot be grown because it has two ne
dark dots~sites 1 and 18!; the next selected site 20 has on
one nearest dark dot~site 2!, therefore it becomes a new
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grown site; as the procedure continues, the pattern gr
upward successively. To show the pattern and analyze
dimension, the obtained pattern on the cylinder is map
approximately to the corresponding rectilinear grid@see Fig.
1~b!# with the sizep3h, wherep and h are the circumfer-
ence and the height of the original pattern, respectively.

We have studied the spatial pattern formation of t
model for different circumferencep, and found that asp
increases, the evolution of the pattern with a heighth shows

FIG. 1. Schematic illustration of the HCA model.
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an interesting recursive behavior. The results of numer
computer simulations can be described as follows.

~1! Pattern sequences. When p5m32n or m32n11,
where n is a positive integer, andm an odd number, the
pattern has a regular structure. For a certainn, with m51, 3,
5, 7, etc., the model generates two similar pattern seque
in the increasingp order: 2n, 332n, 532n,..., ~called as
even p pattern sequence! and 2n11, 332n11, 532n

11,..., @odd p pattern sequence#. In the evenp @odd p# pat-
tern sequence, the first pattern with the size 2n32n @(2n

11)3(2n11)# has a structure similar to the Sierpinski tr
angle gasket, and any other pattern with the size (m32n)
3(m32n) @(m32n11)3(m32n11)# (mÞ1) is com-
posed ofm3m elementary pattern blocks which have t
similar structure as the first one of the pattern sequence.
ures 2~a!–2~c! show the first three patterns of the oddp
sequences forn56. In Fig. 2~a!, if cutting out the sites in the
first row and the first column~the first column contains only
one occupied site!, the remaining pattern with the size 26

326 is a regular Sierpinski gasket. Figures 2~b! and 2~c! are
333 and 535 arrays consisting of the small pattern block
respectively. As can be seen, these pattern block arrays s
a lateral quasiperiodicity.

~2! Pattern transition from fractal to compact. From p
52n11, the evolution of the pattern undergoes abru
change. Figure 3 provides examples of the pattern evolu
with increasingp in a narrow range ofp>2811. Figure 3~a!
is the first pattern (p52811) of the oddp pattern sequence
for n58, which is structurally equivalent to Fig. 2~a!. With
an increase inp of only one unit, the simulation generates t
pattern shown in Fig. 3~b!. The pattern is still regular. As
compared with Fig. 3~a!, many blank triangle regions in Fig
3~a! now become completely filled with the grown site
making the pattern very compact. The same compact pa
can be obtained withp52821. Further increasingp in p
.2811 region ~or decreasingp in p,2821 region! will
generate the overall homogeneous, but highly textured
terns, meanwhile irregular growth behavior appears as sh
in Figs. 3~c! and 3~d!, where there are many locally rando
or amorphous domains immersed inside the regular sm
pattern block arrays.

As shown above, for differentp, the densities of the
grown sites of the patterns are obviously different. We c
describe this kind of density variation quantitatively by c

FIG. 2. The first three patterns ofn56 pattern sequences wit
odd p, ~a! p52611565, ~b! p53326115193, ~c! p55326

115321.
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culating the occupation percentage of patternh versusp,
whereh is defined as the ratio of the number of the occup
sites to that of all the sites in a pattern with the heighth
5p. Figure 4 shows the curve ofh-p. It can be seen tha
there are sudden drops ofh at the pointsp5m32n and m
32n11, and with the increasing exponentn, h decreases.
Therefore, the occupation percentagesh belonging to differ-
ent pattern sequences can be distinguished fairly well fr
the h-p plot. On the other hand, for a certain pattern s
quence such asn55 or 6, with increasingm, the values ofh
have also small variation, and in the case ofn<4 theh even
shows an obvious fluctuation. This is due to the appeara
of the irregular growth behaviors in some local regions

FIG. 3. Evolution of HCA with~a! p5257, ~b! p5258, ~c! p
5264, ~d! p5272.

FIG. 4. Dependence of the occupation percentageh on the cir-
cumference of the helixp.
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side the pattern block arrays as shown in Figs. 2~b!, 2~c!,
Figs. 3~c! and 3~d!, etc. In addition, a strong fluctuation i
the occupation percentage occurs at the position nearp52n

or 2n11, an indication of the sudden transition from regu
fractal growth to the compact growth. Theh-p plot clearly
exhibits the sensitivity of the model to the variation in t
circumference of the helix.

According to the rule of the HCA model, the patte
growth in the vertical direction can be infinite, therefore a
other important aspect of the model is the long term beha
of a growing pattern. In the following text, the pattern ev
lution with increasing height~or increasing growth time! is
shown for several typical circumferences of the helixp.

Further growth starting from the regular Sierpinski t
angle gasket withp52811 is shown in Fig. 5~a!. Consider-
ing the lateral quasiperiodicity of the system, with increas
height the growth process successively generates tria
patterns similar to the initial one. To describe the evolut
process of the pattern conveniently, every triangle patter
numbered according to its order of appearance. Figure~b!
shows the upward evolution of the compact pattern (p528

12) with the heighth from 1 to 2834. The pattern consist
of four small square blocks denoted by number 1 to 4.
seen clearly, these pattern blocks with the same size8

12)328 exhibit obviously different texture. Further increa
ing h, the simulation will generate complex, but still high
textured pattern. The evolution of the square blocks of s

FIG. 5. Pattern evolution with increasing height with~a! p
5257,~b! p5258, and~c! p5384. Each block is numbered accor
ing to its generated order.
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3843384 with increasing height is shown in Fig. 5~c!. We
also divide the pattern into the numbered pattern blocks w
the size 3843384 during growth. At early stage of th
growth, the pattern has still a regular structure, but as
height increases, more and more irregular growth behav
appear. Different to the previous two examples, the ini
regular triangle array evolves to a completely random str
ture eventually composed of many big or small empty
angles. From the examples shown in Figs. 5~b! and 5~c!, no
overall vertical periodicity seems to emerge, at least for
limited height available.

In order to characterize quantitatively the pattern evo
tion with increasing height, we perform fractal dimensio
analysis on the numbered pattern blocks in the plane.
dimension of a pattern block is calculated by using the b
counting method. Figures 6~a!–6~c! present the dimension
evolution with increasing ordinal number of the blocksN

FIG. 6. Dependence of fractal dimension of the pattern blo
on the ordinal numberN. ~a!, ~b!, and~c! correspond to the pattern
evolution shown in Figs. 5~a!–5~c!, respectively.
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~increasing height!, corresponding to Figs. 5~a!–5~c!. As
seen from Fig. 6~a!, for the regular growth like Fig. 5~a! the
D-N curve exhibits regular oscillation, and many differe
blocks have almost the same dimension value. The dim
sion calculated from the first pattern block in Fig. 5~a! is
1.584 96, which is just equal to the fractal dimension of re
lar Sierpinski triangle gasket as expected. TheD-N curve
@Fig. 6~b!# obtained from the evolution of the initial compa
pattern shows many irregular fluctuations. It is found that
peaks of dimension appear at the positionsN52n. The simu-
lation result indicates that although these dimension pe
have almost the same heights, the corresponding blocks
obviously different. In Fig. 6~c!, the D-N curve also shows
random fluctuations, but on the average, there is a tren
increase ofD. Contrary to Fig. 6~b!, now sharp drops inD
occur at the positionsN52n. These results clearly show tha
the pattern evolution with increasing height strongly depe
on the circumference of the helixp, and differentp can lead
to completely different growth behaviors.

The present HCA is quite simple. To improve the simu
tion results as compared with the actual growth experime
@9–12#, the model may be developed in the following wa
The intermediate crowded condition may be extended to
clude the second-nearest neighbors. All sites on the circ
a
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helix can be rearranged so that each site has six nea
neighbors, then the obtained pattern on the cylinder can
mapped to a hexagonal grid in the plane. The model is
terministic by construction. However, randomness can
rather conveniently incorporated, either by choosing a r
dom initial seed or by assigning a probability to each grow
site. Despite its simplicity it seems probable that this mo
may provide some insights into the pattern formation p
cesses for the helical growth system and may also pr
useful in future studies seeking the controlled design
nanostructure morphologies.

To summarize, we have presented a helical CA model
investigated the behavior of the evolutionary patterns of
simple deterministic CA with only one control paramete
The initial growth of the model generates various patte
including Sierpinski triangle gasket, regular compact patte
and array structure composed of elementary pattern blo
With increasing height these initial patterns evolve to regu
periodic structure, complex textured pattern, or complet
random pattern, eventually. The results of the occupa
percentage and fractal dimension analyses show that the
lutions of the model are sensitive to the circumference of
helix.
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